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Optimization of Multilayer Antireflection Coatings
Using an Optimal Control Method

J. J. Pesqué, Daniel P. Bouche, and Raj Mittra, Fellow, IEEE

Abstract—The design of a thin, light weight and broadband
radar absorber is a problem of considerable interest and is cast
in this paper as a minimization problem of the following quan-
tities, namely the reflection coeflicient at the set of frequencies
{fis frs =" 5 f.} and the thickness (or surface mass) of the
absorber. We attempt to synthetize an absorber with a un-
defined number of layers and assume we have the freedom to
choose the permittivity and the permeability of the material in
each layer from a set of m specified value of ¢,(f) and y,(f).
The usual approach to the design problem is to consider clas-
sical types of absorbers, such as Dallenbach or Jaumann layers
[1]. In this paper, we present a design procedure based upon
an Optimal Control method, that simultaneously determines
both the material properties of the different layers as well as
their thicknesses, to minimize at the same time the reflection
coefficient over a prescribed range of frequencies and surface
mass or thickness. Illustrative examples of multilayer absorb-
ers synthetized with this method are presented and the results
are compared with those designed by using the Simulated An-
nealing method.

I. INTRODUCTION

N THIS paper we consider the problem of synthetizing

a multilayer Radar Absorbing Material (RAM) coating
for reducing the radar cross section (RCS) of radar targets
using an Optimal Control approach. Typically, the spec-
ifications for an antireflection coating are that it should be
lightweight, thin and have a broadband response over sev-
eral octaves, e.g., 4 or 5.

The usual approach to designing such a coating is to
use classical types of absorbing screens, such as Salis-
bury, graded index or Jaumann screens [1]. At optical fre-
quencies, multilayer lossless dielectrics are often used as
anti-reflection coatings. All these types of screens, except
the last one, can be designed by following simple proce-
dures. The Salisbury or graded index screens are typically
designed wusing approximate closed form formulas,
whereas an optimization scheme is employed for the de-
sign of Jaumann screens, as well as for optical coatings
[2], 13]. Typically, the parameter space, e.g., range of
materials, thickness or arrangement of the layers, etc., in
which the optimization is carried out is fairly limited, and

Manuscript received September 10, 1991; revised February 10, 1992.

1. 1. Pesqué and D. Bouche are with the Commissariat 4 1'Energie
Atomique, Centre d’Etudes Scientifiques et Techniques d’ Aquitaine, BP N
2 33114 Le Barp, France.

R. Mittra is with the Electrical Engineering Department, University of
Illinois, 1406 West Green Street, Urbana, IL 61801-2991.

1IEEE Log Number 9201718.

the design procedure is applicable only to a specific type
of screen. In this paper, we attempt to overcome this lim-
itation, by using a generalized synthesis procedure based
upon an Optimal Control approach. This procedure sys-
tematically determines both the thickness and the material
parameters of the layers that minimize at the same time
the reflection coefficient over a specified range of fre-
quencies and the total thickness or surface mass. Al-
though we concentrate on the case of normal incidence in
this paper, the method can be readily extended to the
oblique incidence case, with some modifications (see Ap-
pendix).

The problem we wish to address can be stated as fol-
lows: using available materials with given permittivity
e(f) and permeability u(f), design a multilayer screen
with minimal reflection coeflicients at a prescribed set of
frequencies { f}, f2. * * * , f»}. The screen can be specified
to have either minimal thickness or surface mass.

Consider a plane wave normally incident on a multi-
layer coating backed by a perfect electric conductor as
shown in Fig. 1 (T is the total thickness of the layer).
From Maxwell equations, we can readily derive:

_ dH.
]weEy(x,f) + 'ax— =0

dE

JouH,(x, f) + —= =0 M

where w = 27fand fis the frequency of the incident wave.
Next, we use the usual definition for the wave imped-
ance Z given by

Zixy =

H, (x) @

By differentiating (2), using (1) and introducing the rela-
tive impedance Z,., we can obtain the following equation:
dZ,

dx ‘wrerZ% = jo pr 3

where:
Zr=Z/ZO =7ZX “EO/I'LO
w =w/c=wX

€o o

€ = 6/60 and by = ”’/I’LO'
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Fig. 1. Geometry of the problem.

In the following we shall drop the subscript r to simplify
the notations. Thus, in the following, Z will stand for rel-
ative impedance, ¢ and p for relative permittivity and
permeability.

Equation (3) is valid for all point x in the thickness of
the layer. It is recognized to be a Riccati equation, whose
coeflicients depend upon f, as does the impedance func-
tion Z. Next, we identify the parameters that are at our
disposal for solving the optimization problem. They are:

(i) number of layers
(i) material parameters of each layer
(iii) thickness of the layers

In contrast with the conventional approach, we do not
a priori specify the number of unknown parameters to be
dealt with in the optimization problem. This enables us to
explore a wider range of design options than would be
possible if the number of parameters were prespecified,
as for instance, is the case for Jaumann screens.

We begin by observing that the boundary condition on
the perfect electric conductor located at x = 0 requires
that Z be equal to zero there. At the external surface of
the layer, i.e., at x = T, we desire that Z be as close to 1
+ jO as possible. Thus, we wish to transform the reflec-
tion coefficient given by R = (Z — 1) /(Z + 1) from —1
to O by the introduction of the multilayer coating. Return-
ing to (3), we can regard it as a nonlinear differential
equation for Z with prescribed initial value Z = 0 at x =
0 and a desired final value of Z = 1 at x = 7. We identify
this as a problem of Optimal Control and use a minimal
time control approach to derive the solution [4].

We begin by providing a brief review of the theory of
the Optimal Control in minimal time and subsequently de-
scribe how this theory is applied to solve the problem at
hand in Section II. Next, we further generalize the ap-
proach such that we can simultaneously minimize the re-
flection coefficient as well as the total thickness of the
layer, or surface mass (see Section III). Finally, in Sec-
tion IV we present some representative numerical results
to illustrate the application of the method.

II. OpriMAL CONTROL IN MINIMAL TIME
2.1 Brief Account of Optimal Control Procedure

In this section we briefly describe the basic procedure
for the application of the optimal control method for the
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solution of the multilayer synthesis problem. The inter-

— ested reader is referred to [5], [6] for further details.

We consider a dynamic process described by a system
of n time differential equations, called the state equations:

Z@) = f{Z0), - L Z,@; m@, - L un ;1) @

Z(1) is the state vector. Z(¢) belongs to Z,;, C R".

Z  is the derivative of Z with respect to time.

u(f) 1is the control vector. u(¢) belongs to U,; C R™.

Z,s 1s the set of allowable states; U, is the set of
allowable controls.

In following sub-sections, we will point out the corre-
spondence between ¢, Z(r) and u(f), and the height in the
screen x, impedance at height x: Z(x) and the medium pa-
rameters respectively.

The optimal control problem is to take the system from
a given initial state at + = 0, to a final state at the final
time ¢t = T which is as close to the goal state as possible.
The objective is to do this with a minimal cost, following
the path from initial to the final state.

The cost function C is defined such that it is an aggre-
gate of two constituent cost functions. The first of these
is the distance between the final obtained state and the
goal state denoted by §; the second is the incremental cost
function integrated along the path, indicated by L. Thus,
C is given by

T
C=8ZT),T) + so L(Z(D), u(®), 1) dt. S

Minimizing C is also equivalent to minimizing C' which
is given by

T
C' = S L' (Z(H), u@®), 1) dr (6)
0
with
s . as
"=L+-—=7+ —
L + Py + Fy (7

Note that C’ is to be minimized under the constraint of
the state equations given in (4).

Introducing the Lagrange parameters represented by the
vector A, we recast the problem of minimizing C’, defined
in (6) into the unconstrained minimization problem of
minimizing C" given by

T
CM=&D+xQﬂzm0—bﬁ (8)

where A is also called the costate or the adjoint state.
Next, we introduce the Hamiltonian H, which is de-
fined as

H=L"+\f ©

in order to recast the optimization problem in an alternate
form.

When the control vector u is unconstrained, i.e. U, =
R™, the optimal solutions Z* (£), u ™ (£), N () satisfy the
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Euler-Lagrange equations (see [5], [6])

. oH
)\X = _—a:(zx5 uxs AX,I) (10)
oH
z" _K(Zx, SN an
dH
— @ u N, =0 (12)

However, when the control vector u is constrained,
namely U,, is included in but is not identical to R™, the
algebraic system (12) is no longer valid and this equation

is replaced by the maximum principle of Pontryaguin (13): -

HZ> @, u™ @, N*@), & < HZ*®), u@®, N*®), 1)
(13)

forall u € U,; and at all ¢ € [0, T].

Equations (10) and (11), which are differential systems
of first order and dimension », determine the evolution of
N () and Z* (¢), and (13) enables one to compute u * (¢)
for each 7. Equations (10) and (11) contains 2z unknowns
(n each for the state and the costate) and an additional
unknown that is the final time. Thus, we need 2n + 1
boundary conditions to determine these unknowns. The
initial state vector Z(0) provides » initial boundary con-
ditions. The remaining n» + 1 conditions are obtained from
the transversality conditions [5]:

IZ W, » x| _
[ 3z A (t)] =0 (14)
{H(Zx(r), WO, N<@), 0+ @g—f—@} -0
(15)

Equations (10), (11), and (13) through (15) completely
define the problem of finding the optimal solution Z™,
u*, \N*, T.

The problem stated above is a boundary value problem
from differential operators, whose solution is more costly
than it is for an initial value problem. For this reason, we
have opted to derive the solution of the above-mentioned
equations using an alternate approach to be described in
the following section.

Before concluding this section, we present the special
case of minimal time control, for which the state equation
is linear. We show below that, in this case, the inequality
(13) leads to the solution of the optimal control problem
in a straightforward manner.

2.2 Special Case of Control in Minimal Time with
Linear Dependence of the State Equation on the Control
Vector »

In this case, the problem is to take the system from an
initial state at ¢+ = O, to a final state Z, in a minimal time
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T. Thus, the quantity to be minimized is

T
T= S dr. (16)
0

Now we consider the special case where the state equation
depends linearly on the control vector u(?) as follows:

Z@) = ¢Z0), » + B, Hul) an

where B is a rectangular n X m matrix and ¢ is a function
not depending on u. Finally, we suppose that the allow-
able controls are defined by

Upmin < () < Wemax k= {1, -+, m} (18)
In this case, the Hamiltonian H becomes
H=1+X¢ + \"Bu. (19)
For this special form of H, (13) yields
N TOBZX@), Hu @) < N TOBZ*®, Hu®). (20)

Alternatively, if b, is the kth column of the matrix B, (20)
can be written as

2 N TOb(Z 0, )ui O

= X WVTObEZO, Hu® 2D
which for independent u;’s yields
Uemin ~ ENT@OBEZ* @), 1) > 0
ug @ = 22)
Wemax I NST@Ob(Z7 (1), £) < 0.

Hence, the components u; of the control vector can only
assume either their maximum or minimum value. These
values change at the switching times when the sign of
N T@® b (Z* (1), 1) changes. This type of control is re-
fered to as bang-bang [5].

Having described the optimization procedure using the
control theory terminology, we go on to show how it ap-
plies to the problem at hand, namely the synthesis of mul-
tilayer absorbers.

2.3 Application to the Multilayer Absorber Problem

We begin by establishing the correspondence between
the variables used in the optimal control and the absorber
synthesis problems in the following:

(i) the height x above the perfectly conducting plane is
identified with the time ¢ in the optimal control problem

(ii) the state vector Z(x) is an n-component vector and
the impedance Z;(x) at height x for the frequency f;, are
the components of this vector. Each Z;(x) is to be taken
from an initial value of O at x = 0 to a final value as close
as possible to the goal state (1 + jO) at the total thickness
x=T.

(iii) The Riccati equations (3), at frequencies {fi,

<+, fis ** +, [} are the state equations.
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The next thing to be specified is the control vector u,,
k= {1, - - -, m}. The only possible control parameters
are the material parameters e(x) and up(x). At this point,
we also introduce an auxiliary function called the ‘‘rate’’
of the material at height x. We can then express e(x, f)
and u(x, f) as

e, ) = 2 m@ealf)

m

w, f) = 2 ) (f) 23)
where k € {1, - -+ , m}, m is the number of available
materials. ¢, and p, are the permittivity and the perme-
ability of the kth material respectively.

u,(x) € [0, 1] and k\_jl u(x) =1 forall x.

With the definition of ¢ and x given in (23), all points of
the convex hull of the material properties, i.e., the en-
velope of the available materials, can be accessed. For a
general choice of u;, the individual layers can be hetero-
gencous material. However if one and only one u; is al-
lowed to be different from O (i.e., it takes the value of
one) at elevation x, then the material of each layer is
purely homogencous.
Next, we identify the state equation as

dZ, . _, < 5

o ezl 2 e(f) = jor 2w (f) Q4
k=1 k=1

which is a linear function of the control .

We now turn to the discussion of the choice of the cost
functions S and L defined in Section 2.1.

For the quantity S, which measures the distance be-
tween the final state (Z(T), * -+ , Z,(T)) and the goal
state (1, - - - , 1), a possible choice is

n
§=23 1z - 1] 25)
ni=1
where « is a parameter chosen by the user to combine the
two cost functions, S and | L. These functions are dis-
tinctly different in nature, as seen from the definitions
given in Section 2.1.

For the quantity L, which measures the cost of the tra-

jectory. we can make either of the following two choices:

(i) L = 1 which implies that {! L dx = T and therefore
we minimize the thickness of the coating

(ii) L = X7 p,u;(x) where p; is the volumetric mass of
the kth material; for this choice, we minimize the
surface mass of the coating.

Now that we have laid the foundations of our optimi-
zation procedure, we can proceed to apply it to our syn-
thesis problem. Before we do this, however, we explain
in the next section how we can modify the formulation so
that it would be better suited to application to our partic-
ular problem.
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III. MODIFICATION OF THE OPTIMIZATION PROCEDURE

3.1 Formulation in Terms of a Nested Optimization
Problem

In the preceding section, we described how the Pontry-
agin principle (13) combined with the transversality con-
ditions (14) and (15), and the Euler Lagrange equations
(10) and (11) can be used to compute the state vector Z*,
the adjoint state \™, and the optimal control # ™ to solve
our minimization problem. However, the method de-
scribed above has two drawbacks. First, it calls for the
solution of a boundary value problem for the differential
system, rather than an initial value problem, and this, in
turn, makes the solution procedure computationally inten-
sive. Second, and perhaps the more serious drawback, is
that the parameter o must be chosen by the user. A large
value of this parameter emphasizes the minimization of
the reflection coefficient, whereas a low value focuses on
the minimization of the thickness (or of the surface mass)
of the coating. It is not an easy task for the user to develop
a strategy for choosing «, because the two cost functions
are different in nature. In order to circumvent this problem
that arises because of the definition of the cost function,
which is a combination of two different functions § and
§ L, we suggest an alternate route, in which we solve a
nested minimization problem as explained below.

In this approach, we first define the internal minimiza-
tion problem, with the cost function C = {I L dx, which
is a minimal time control problem. We solve it using the
algorithm for control in minimal time given in Sec. 2.2,
using a prescribed value of the costate vector A at height
x = 0, i.e., on the perfectly conducting plane. Equations
(10) and (11) yield the evolution of Z(x) and A(x), and
(22) yields the value of the control. So, at a given eleva-
tion x, u(x), Z(x) and A(x) only depend on the initial value
Ax = 0). The total thickness T is defined as the value of
x where S(Z(x)) reaches its minimum on [0, X,,,] where
X, s the maximal allowable thickness. The solution for
S(Z(T)) thus derived, becomes a function of the initial
costate A at x = 0. The next step is to minimize S as a
function of this free parameter A at x = 0, which can be
viewed as an external minimization problem. This prob-
lem will be addressed by using a gradient optimization
method described in the next section.

Note that the two minimization problems are nested,
because the computation of the cost function of the exter-
nal problem requires the solution of the internal problem:.
Note also that the strategy in this method is different from
that of the previous section, where the two cost functions
were simply combined using the weighting parameter «.

3.2 Non-Convexity of Minimization Problem for S

A convenient way to minimize the cost function S would
be to use the gradient method. However, this method is
primary suited for convex problems and, hence, it would
be necessary for us to modify for our case, which is typ-
ically non-convex. For a convex problem, one could start
from any point in the A space and reach the global mini-
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mum via the gradient optimization procedure. However,
for our problem, we expect in general to reach only a local
minimum. Thus, we begin by gridding up the N space,
and we calculate the value of the cost function § for each
point of the grid. Then the points of the grid that give the
lowest costs S are used as initial values for a gradient
method to determine the nearest local minimum. By fol-
lowing this technique we hope to reach the most ‘‘desir-
able’’ local minima. ‘‘Desirable’’ is defined in terms of
minimal cost of the S function. It will be evident from the
discussion given in Section V that this hope is reasonable.

For the single frequency case, the A space is two di-
mensional, spanning the complex plane €, and it is pos-
sible to work with a fine grid without investing an exces-
sive amount of computation time. However, when the
minimization problem is solved simultaneously for » fre-
quencies, the A space is now 2n dimensional, i.e. G", and
we must work with a coarser grid in order to keep the
computational time between realistic bounds. It is con-
ceivable that, using such a grid, we will miss some of the
local minima that would have yielded better solutions.
However, an advantage of the outlined procedure is that
we can find several solutions which, while they are not
optimal from the point of view of yielding the lowest re-
flection coeflicient, may nevertheless yield thinner screens
than that synthetized by the optimal solution. It is also
possible that some of these solutions based on local min-
ima yield multilayer solution screens with smaller number
of layers than that predicted by the optimal solution, a
feature that is desirable from the manufacturing point of
view. Using this approach, the user has more flexibility
in choosing the design for the screen.

3.3 Choice for the Cost Function S

We now discuss the choice of the cost function S to be
used in the optimization procedure described above. We
have a number of options available for choosing S. Some
examples are given below.

(i) One of the simplest choices for the cost function

M=

S, = |Z(T) — 1}

=

i=1

i

which is based on the use of the impedance Z; at x = T.
(ii) A second choice is S, which is related to the re-
flection coefficient:

1 n
S, = = 21 R(f)
ni=1
where
Z — 1
R = S
(f) = 20 log Z 7 1'

However since R( f) is not bounded from below, this form
has some drawbacks. Experience shows that using this
cost function, we often obtain solutions that have very
low reflection coefficient at only one or two of the pre-
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scribed frequencies, that are clustered together, and mod-
erately high values for the reflection coefficient at the other
frequencies, and yet the value of the cost function §, is
still reasonably low. These solutions typically have very
narrow bandwidth, a feature that is usually not too desir-
able, because specifications typically call for low reflec-
tion coefficient covering a fairly wide band of frequen-
cies.

(iii) To overcome this deficiency, we introduce a new
cost function S; defined below, that circumvents the nar-
row bandwidth problem:

5 = R(f)

max
{fi o}

Experience shows that, in general, the use of S; yields a
better solution than that obtained by S,.

(iv) Still other types of cost functions can be defined in
terms of different reflection coefficient R, ( f;) for each fre-
quency. The R.( f;) are chosen in accordance with speci-
fication for RCS reduction, which may be different for
different frequencies. Two such cost functions are

1

1l

L3 R ~ RO

or

Ss

max |R(f) — R.(f)|
{fi.e )

(v) One can generalize this type of cost function even
further by weighting the norms of the difference R( f)) —
R.(f)), which leads to S¢ given by

S5 = 21 pilR(f) = Re( )]

with
Zpl' =1

This cost function allows us to accentuate the RCS reduc-
tion at certain frequencies prescribed by the user.

p,'>0‘

IV. NumericaL ExXAMPLES

To illustrate the application of the synthesis procedure
for absorbing screens just described in the last section, we
present a number of numerical examples in this section.
We assumed the availability of approximately 20 different
types of materials for the purpose of the numerical cal-
culation below. These were chosen from:

(1) lossless dielectrics with permittivity e between 1
+ j0 and 3000 + jO.

(1i) lossy dielectrics: e complex varying between 10
+ jO and 65 + j50. Fig. 2 depicts the variation
of e with frequency for two special materials re-
ferred to as DP2 and DF2 in this paper.

(iii) magnetic materials with constant € of 15. + jO
and a variable p in the frequency range of interest.

Fig. 2 shows the properties of four materials F 1, F4,
MHP 1 and MHP?2 vs. frequency.
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Fig. 2. Characteristics of 6 of the proposed materials.

The optimization was applied in two frequency ranges
using the cost function §3. The ‘‘low frequency’’ band
covered the range 0.2 to 2 GHz while the frequency range
was 2 to 8 GHz for the ‘‘high frequency’’ band.

4.1 Low Frequency Solutions

The following solutions where derived for the range .2
and 2 GHz

We present both the optimal solution and a few others —20 dB solution: 3.187 mm of Mat F1
corresponding to the local minima that yielded screen 0.668 mm of Mat MHP2
thicknesses smaller than the optimal one. Total thickness: 3.856 mm
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Fig. 3. Low frequency range solution.

—19 dB solution: 2.95 of F1
0.6 of MHP2
0.12 of F4
Total thickness: 3.67 mm
—15 dB solution: 2.08 of F1
0.272 of MHP2
0.409 of F1
0.025 of F4
Total thickness: 2.79 mm

The plot of the reflection coefficient vs. frequency for
the first of these solutions is given in Fig. 3.

4.2 High Frequency Solutions
These are derived in the range 2 and 8 GHz

—20 dB solution: 1.085 of F1
0.503 of F4
1.279 of MO
0.345 of MHP1

Total thickness: 3.212 mm

—15 dB solution: 0.121 of F1
0.707 of F4
0.514 of MO
0.413 of MHP1

Total thickness: 1.755 mm

—13 dB solution: 0.111 of F1
0.7 of MHP1
0.129 of MHP2

Total thickness: 0.94 mm

The plot of the reflection coefficient versus frequency
for the first of these solutions is given in Fig. 4.

V. COMPARISON OF THE SIMULATED ANNEALING
APPROACH WITH THE OPTIMAL CONTROL METHOD
In order to reduce the chances that some of the local

minima that would be regarded as good solutions to our
minimization problem are not overlooked, we have gen-
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Fig. 5. Solution obtained by Simulated Annealing.

erated a solution to the synthesis problem by using a sec-
ond method, viz. the Simulated Annealing approach, and
have compared the results obtained via using this method
and the Optimal Control approach. Simulated Annealing
approach is well-suited for application to non-convex op-
timization problems. In this approach we deviate some-
what from that of Optimal Control method, in that we
prescribe a priori the total thickness of the layer. This
total thickness is divided into a large number of thin sub-
layers each of which is only about 50 pm thick. [7] The
Simulated Annealing program was run by using the same
cost function as given above (S3), and for the same range
of material parameters. It was found that in the low fre-
quency range, viz. between 0.2 to 2 GHz, the solutions
obtained by the Simulated Annealing technique were no
better than those derived by using the Optimal Control
method. However in the high frequency range (2 to 8
GHz) application of the Simulated Annealing method did
lead to somewhat lower reflection coefficient for a given
total thickness, or, alternatively, slightly thinner screens
for the same reflection coefficient. For example, Fig. 5
shows a solution with reflection coefficient of —20 dB for
a total thickness of 2.72 mm, which may be compared
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with the 3.21 mm thick solution obtained with the Opti-
mal Control method (see Fig. 4). However, the number
of layers required to achieve these results using the Sim-
ulated Annealing method is often quite high typically on
the order of 20 to 30, and sometimes even more. It would
be difficult to manufacture such a coating because of the
fragile nature of some of the material and small thick-
nesses of these layers. In contrast, the Optimal Control
method, although it leads only to a local minimum for the
cost function, yields results almost always in the realm of
practical realizability from. the fabrication point of view.
‘Our future plan is to incorporate in the expression for the
cost function a penalty function which is biased towards
a smaller number of layers, with the hope that the Simu-
lated Annealing approach would also lead to a practically
useful type of solution.

VI. CoNcCLUSIONS

The general problem of optimal synthesis of multilayer
antireflection coatings is difficult because it requires deal-
ing with a very large number of parameters, e.g. the num-

ber of the layers, choice of material media and so on. It -

is also made complicated by the fact that two quantities,
viz., the reflection coeflicient and the thickness have to
be minimized simultaneously, and that the minimization
problem is non-convex.

We have presented an Optimal Control procedure, that
provides an effective as well as efficient way of handling
this problem. It should be pointed out, however, that user
interface is necessary in implementing the procedure, be-
cause both the optimal and the locally optimal solutions,
generated by the algorithm must be closely examined and
evaluated in order to ascertain that they are practical from
the manufacturing point of view. The advantage of the
present approach over the classical method for designing
antireflection coating is, of course, that the solutions ob-
tained are usually much superior than the classical ones,
e.g. the Dallenbach screen [8].

APPENDIX
OBLIQUE INCIDENCE CASE

For the oblique incidence case, we consider TE and
TM polarizations. The impedance for TE and TM polar-
izations are respectively denoted by Z, and Z,. Equation
(3) for Z is replaced by (26) and (27) for Z; and Z,.

dz, . sin” ¢ 2 .
E = Jwe 1 - 21 — Jwu (26)
€p
d in’ 9
XZZ = jweZ? — jou <1 ~ o > @7)
Ep

where 0 is the incident angle between the direction of
propagation and the outward normal to the surface of the
layer. :

The goal state, for the case of a single frequency, is
now [1/cos (8)] + jO for Z; and cos (8) + jO for Z,. The
initial state is (0 + jO, 0 + j0).
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However, we have as in the normal incident case, an
Optimal Control problem in minimal time, and the method
outlined in the main text can also be applied to the oblique
incidence case.

Furthermore, note that, defining ¢ = (1 — [sin
0 /eu]) for (26) and p* = p(l — [sin® 6 /eu]) for (27),
(26) and (27) both boil down to (3) with new values of ¢
and u. But our materials have high index of refraction,
thusep >> lande™ = ¢, p™ = p. Therefore, the results
obtained in the oblique incidence case will not be very
different from those of normal incidence.
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